

General Description

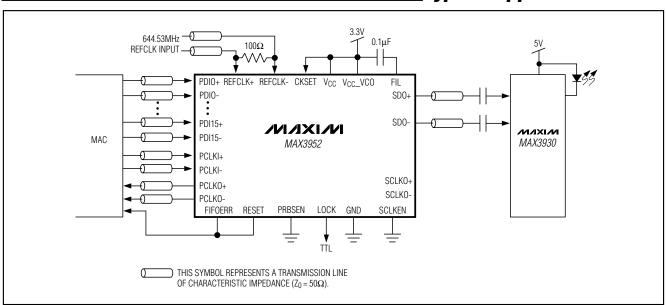
The MAX3952 16:1 serializer is optimized for 10.3Gbps and 9.95Gbps Ethernet applications. A serial clock output is provided for retiming the data at the latch input of the laser driver. Both the high-speed data and clock are CML outputs. The serializer operates from a single +3.3V supply, consuming only 1.15W typical power.

The clock multiplier reference clock frequency can be either 1/16 or 1/64 the serial output clock rate. A FIFO aligns the phase between the parallel clock input and the internally synthesized clock. In addition, a 1/16 counterdirectional clock output (LVDS) is provided for use as the clock signal of the XAUI codec IC or framer.

The operating temperature range is from -40°C to $+85^{\circ}$ C. The MAX3952 is available in a 10mm \times 10mm 68-pin QFN package.

Applications

10Gbps Ethernet LAN 10Gbps Ethernet WAN **Features**


- ♦ Operates at 9.953Gbps and 10.3125Gbps
- ♦ 16-Bit LVDS Interface
- ♦ Single +3.3V Supply
- ♦ 1.15W Power Dissipation
- **♦ LVDS Source Clock Output**
- ♦ Built-In 27 1 PRBS Pattern Generator
- ◆ Deterministic Jitter: 9ps (max) at 0°C to +85°C
- ♦ Operating Temperature Range: -40°C to +85°C
- ♦ 68-Pin QFN Package (10mm × 10mm)

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX3952EGK	-40°C to +85°C	68 QFN

Pin Configuration appears at end of data sheet.

Typical Application Circuit

MIXIM

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

Power Supply (V _{CC})	0.5 to +5V
CML Output Current (SDO±, SCLKO±)	22mA
LVDS Input Voltage Levels	
(PDI_±, PCLKI±)	0.5V to $(V_{CC} + 0.5V)$
LVDS Output Voltage (PCLKO±)	$0.5V$ to $(V_{CC} + 0.5V)$

Continuous Power Dissipation (T _A = +85°C)	
QFN (derate 30.3mW/°C above 70°C)2424r	пW
Operating Temperature Range40°C to +85	5°C
Storage Temperature Range65°C to +160)°C
Voltage Levels at FIL, RESET, CKSET0.5V to (VCC + 0.	5V)
Lead Temperature (soldering, 10s)+300)°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +3V \text{ to } +3.6V, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}. \text{ Typical values are at } V_{CC} = +3.3V, \text{ differential LVDS load} = 100\Omega, T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current	Icc	(Note 1)		350	500	mA
LVDS INPUT SPECIFICATIONS	(PDI±[150]	, PCLKI±)				
Input Voltage Range	VI		0		2400	mV
Differential Input Voltage	IV _{ID} I		100			mV
Input Common-Mode Current		Input, V _{OS} = 1.2V		100		μΑ
Threshold Hysteresis				70		mV
Differential Input Impedance	R _{IN}		85	100	115	Ω
LVDS OUTPUT SPECIFICATION	NS (PCLKO±)		·			
Output High Voltage	VoH				1.475	V
Output Low Voltage	V _{OL}		0.925			V
Differential Output Voltage	IV _{OD} I		250		400	mV
Change in Magnitude of Differential Outputs for Complementary Inputs	ΔIV _{OD} I				25	mV
Offset Output Voltage			1.125		1.275	V
Change in Magnitude of Output Offset Voltage for Complementary States	ΔIV _{OS} I				25	mV
Differential Output Impedance			80		140	Ω
Outrout Current		Short together			12	Л
Output Current		Short to ground			40	mA

DC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +3V \text{ to } +3.6V, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}.$ Typical values are at $V_{CC} = +3.3V$, differential LVDS load = 100Ω , $T_A = +25^{\circ}\text{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
CML OUTPUT SPECIFICATIONS (SDO±, SCLKO±)							
Differential Output		$R_L = 50\Omega$ to V_{CC}	640	800	1000	mV _{P-P}	
Differential Output Impedance			85	100	115	Ω	
Output Common-Mode Voltage		$R_L = 50\Omega$ to V_{CC}		V _{CC} - 0.2		V	
LVTTL SPECIFICATIONS (RESET	, FIFO_ERF	ROR, LOCK, PRBSEN)				•	
LVTTL Input High Voltage	V _{IH}		2.0			V	
LVTTL Input Low Voltage	VIL				0.8	V	
LVTTL Input High Current	lін		-28		10	μΑ	
LVTTL Input Low Current	Ι _Ι L		-50		10	μΑ	
LVTTL Output High Voltage	VoH	I _{OH} = 20μA	2.4		Vcc	V	
LVTTL Output Low Voltage	V _{OL}	I _{OL} = 1mA			0.4	V	
LVPECL INPUT SPECIFICATIONS	(REFCLK	±)				_	
LVPECL Input High Voltage	VIH		V _{CC} - 1.16		V _{CC} - 0.88	V	
LVPECL Input Low Voltage	VIL		V _{CC} - 1.81		V _{CC} - 1.48	V	
LVPECL Input Bias Voltage				V _C C - 1.3		V	
LVPECL Single-Ended Impedance				1.4		kΩ	
LVPECL Differential Input Voltage Swing			300		1900	mV _{P-P}	

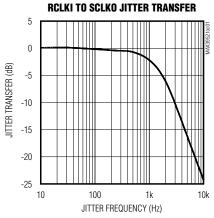
Note 1: CML outputs AC-coupled to 100Ω differential load, PRBSEN = GND, and SCLKEN = GND.

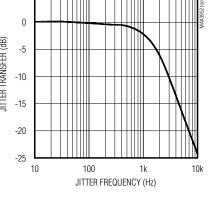
AC ELECTRICAL CHARACTERISTICS

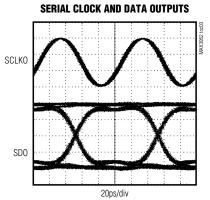
 $(V_{CC} = +3V \text{ to } +3.6V, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}. \text{ Typical values are at } V_{CC} = +3.3V, \text{ differential LVDS and CML load} = 100\Omega, T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS		
Tx DATA INPUT SPECIFICATIONS (PDI±[150], PCLKI±)								
Parallel Input Setup Time	tsu	(Figure 1)			200	ps		
Parallel Input Hold Time	tH	(Figure 1)			200	ps		
Tx SOURCE CLOCK OUTPUT SP	Tx SOURCE CLOCK OUTPUT SPECIFICATIONS (PCLKO±)							
Parallel Clock Output Rise/Fall Time	t _r , t _f	20% to 80%		100	250	ps		
Parallel Clock Output Duty Cycle			45		55	%		
SERIAL DATA OUTPUT SPECIFIC	CATIONS (S	SDO±, SCLKO±)						
Bit-Error Rate				1 × 10 ⁻¹²				
Serial Data Output Rise/Fall Time	t _r , t _f	20% to 80%			28	ps		
Serial Output Clock-to-Data Delay	t _{CK-Q}	(Note 3)	-15		+15	ps		
Serial Data or Clock Output Random Jitter	t _{RJ}				0.9	psRMS		
Serial Data Output		0°C to +85°C (Note 4)			9	psp-p		
Deterministic Jitter	tDJ	-40°C to +85°C (Note 4)			15			
Carial Olaska ar Data Outrast	RL = -20log S ₂₂	100kHz to 10GHz		17		dB		
Serial Clock or Data Output Return Loss		10GHz to 13GHz		10				
Tiotalli 2000	2010910221	13GHz to 15GHz		7				
Tx REFERENCE CLOCK INPUT S	PECIFICAT	IONS (REFCLK±)						
Reference Clock Frequency Tolerance			-100		+100	ppm		
Reference Clock Input Duty Cycle			30		70	%		
RESET INPUT (RESET)								
Minimum Pulse Width of FIFO Reset		UI is PCLKO period		4		UI		
Tolerated Drift Between PCLKI and PCLKO After Reset		UI is PCLKO period; drift is PCLKO crossing - PCLKI crossing	-1		+1	UI		

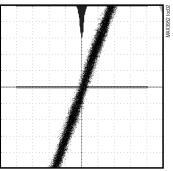
Note 2: See Table 1 for valid operating clock frequencies. AC characteristics are guaranteed by design and characterization.

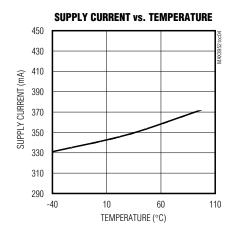

Note 3: Relative to the falling edge of the SCLKO.


Note 4: Deterministic jitter includes pattern-dependent jitter and pulse-width distortion. Measured with a pattern equivalent to 2²³ - 1 PRBS.


___ /N/1XI/N

Typical Operating Characteristics


 $(T_A = +25^{\circ}C, V_{CC} = +3.3V, unless otherwise noted.)$



 $f_{REFCLK} = 155.52MHz$, RANDOM JITTER = $513f_{SRMS}$

Pin Description

PIN	NAME	FUNCTION
1, 4, 5, 13, 17, 18, 26, 34, 35, 51, 52, 68	GND	Ground
2	REFCLK+	Positive Reference Clock Input, LVPECL
3	REFCLK-	Negative Reference Clock Input, LVPECL
6, 9, 12, 25, 43, 60	Vcc	Positive Power Supply
7	SCLKO-	Negative Serial Clock Output, CML. 9.95328GHz or 10.3125GHz
8	SCLKO+	Positive Serial Clock Output, CML. 9.95328GHz or 10.3125GHz
10	SDO-	Negative Serial Data Output, CML. 9.95328Gbps or 10.3125Gbps
11	SDO+	Positive Serial Data Output, CML. 9.95328Gbps or 10.3125Gbps
14	SCLKEN	Control Input for Disabling SCLKO Output: SCLKEN = GND \Rightarrow SCLKO Off SCLKEN = $V_{CC} \Rightarrow$ SCLKO Active
15	PCLKO+	Positive Source Clock Output. LVDS, 622MHz or 644MHz. Clocks the MAC.
16	PCLKO-	Negative Source Clock Output. LVDS, 622MHz or 644MHz. Clocks the MAC.
19, 21, 23, 27, 29, 31, 36, 38, 40, 44, 46, 48, 54, 56, 58, 61	PDI15+ to PDI0+	Positive Parallel Data Inputs, LVDS. PDI15+ is MSB
20, 22, 24, 28, 30, 32, 37, 39, 41, 45, 47, 49, 55, 57, 59, 62	PDI15- to PDI0-	Negative Parallel Data Inputs, LVDS. PDI15- is MSB
33	RESET	16 x 4-Bit FIFO Reset Input, TTL, Active High
42	PRBSEN	PRBS Pattern Generator Enable Input, TTL, Active High
50	FIFO_ERROR	FIFO Error, TTL, Active High
53	LOCK	PLL Lock Indicator, TTL, Active High
63	PCLKI+	Positive Parallel Clock Input, LVDS
64	PCLKI-	Negative Parallel Clock Input, LVDS
65	CKSET	Reference Clock Programming Pin. Programming instructions in Table 1.
66	FIL	Filter Capacitor Input Pin
67	V _{CC} _VCO	Loop Filter and VCO Positive Power Supply

Detailed Description

The MAX3952 converts 16-bit-wide, 622Mbps/644Mbps data to 9.95Gbps/10.3Gbps serial data (Figures 3 and 4). Data is loaded into the 16:1 mux through a 16 x 4 FIFO buffer for wide tolerance to clock skew. Clock and data inputs are LVDS levels, and high-speed serial outputs are current-mode logic (CML). An internal PLL frequency synthesizer generates a serial clock from a low-speed reference clock.

Low-Voltage Differential-Signal Inputs and Outputs

The MAX3952 has LVDS inputs for interfacing with high-speed digital circuitry. This technology uses 250mV to 400mV differential low-voltage swings to achieve fast transition times, minimal power dissipation, and noise immunity. For proper operation, the parallel clock LVDS outputs (PCLKO±) require 100Ω differential DC terminations between the positive and negative outputs. Do not terminate these outputs to ground. The parallel data and parallel clock LVDS inputs (PDI_+, PDI_-, PCLKI+, PCLKI-) are internally terminated with a 100Ω differential input resistance and therefore do not require external termination.

LVPECL Inputs

The reference clock (REFCLK±) has LVPECL inputs for interfacing to a crystal oscillator using AC- or DC-coupling. The REFCLK± inputs are self-biasing to VCC - 1.3V for AC-coupled inputs. Only a 100Ω differential termination resistance must be added when inputs are AC-coupled.

Current-Mode Logic Outputs

The high-speed data and clock outputs (SDO \pm , SCLKO \pm) of the MAX3952 are designed using CML. The CML outputs include internal 50 Ω back termination to VCC. These outputs are intended to drive a 50 Ω transmission line terminated with a matched load impedance. For detailed instructions on how to interface with LVDS, PECL, and CML, refer to HFAN-01.0: Introduction to LVDS, PECL, and CML.

FIFO Buffer

Data is latched into the MAX3952 by the parallel input clock (PCLKI±). The parallel input clock is the FIFO write clock. The parallel output clock (PCLKO±) is the FIFO read clock that loads the 16:1 mux. The FIFO allows the read and write clock to vary by up to ±1UI (unit interval). This specification makes the MAX3952 noncompliant with the IEEE802.3ae standard, as this standard requires a tolerance of ±14UI. Conditions that result in the read and write clock accessing the same FIFO address are indicated by FIFO_ERROR. To clear

this condition, assert RESET high for at least 4UI. FIFO_ERROR can be connected directly to the RESET input to clear timing errors. After reset, the full elastic range of the FIFO is available again.

Frequency Synthesizer

The PLL synthesizes a 9.95GHz/10.31GHz clock from an external reference clock. The PLL reference clock (REFCLK±) can be programmed as 622MHz/644MHz or 155MHz/161MHz using the CKSET pin. See Table 1 for CKSET settings. The parallel output clock (PCLKO±) is derived from the synthesizer and is SCLKO ÷ 16. A TTL-compatible loss-of-lock indicator (LOCK), asserts low when the VCO is unable to lock to the reference frequency. This pin can be used to directly drive an LED. If jitter on the REFCLK± input is present, an error with respect to the divided down SCLKO frequency of 500ppm will be indicated by a low state on LOCK.

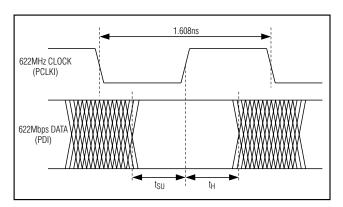
Table 1. Setting REFCLK Frequency

REFERENCE CLOCK FREQUENCY (MHz)	CKSET PIN SETTING	SERIAL CLOCK FREQUENCY (GHz)
622.08	OPEN	9.95
644.53	Vcc	10.3
155.52	GND	9.95
161.13	30 k Ω to GND	10.3

Internal Pattern Generator

The MAX3952 includes a SONET-compliant internal pattern generator capable of a 2^7 - 1 PRBS pattern. Connecting the PRBSEN pin to VCC enables the pattern generator.

Layout Techniques


For best performance, use good high-frequency layout techniques. Filter voltage supplies and keep ground connections short. Use multiple vias where possible. Use controlled impedance transmission lines to interface with the MAX3952 clock and data inputs and outputs. Give special consideration to filtering the VCC_VCO pin; all other power supplies can be connected through a common filter.

Exposed Pad (EP) Package

The EP 68-pin QFN incorporates features that provide a very low thermal resistance path for heat removal from the IC to a PC board. The MAX3952's exposed paddle must be soldered directly to a ground plane with good thermal conductance. Refer to HFAN-08.1: *Thermal Considerations of QFN and Other Exposed-Paddle Packages*.

Chip Information

TRANSISTOR COUNT:8400 PROCESS: SiGe bipolar

9.953GHz CLOCK (SCLKO)

9.953Gbps DATA (SDO)

100.47ps

Figure 1. Setup and Hold Time

Figure 2. Definition of Clock to Q

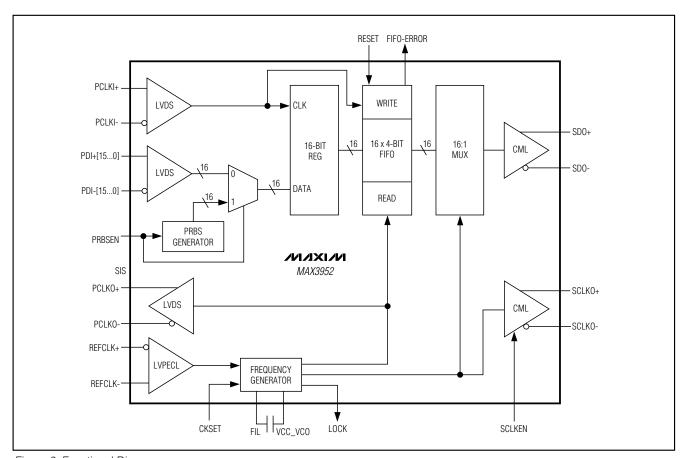
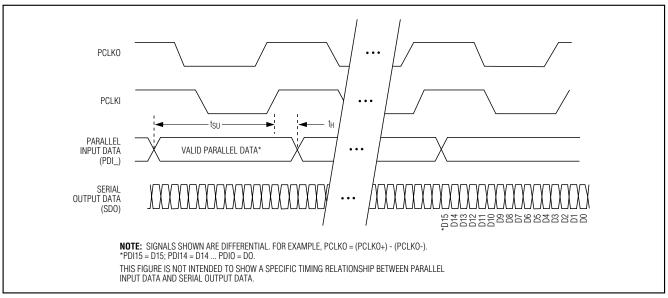
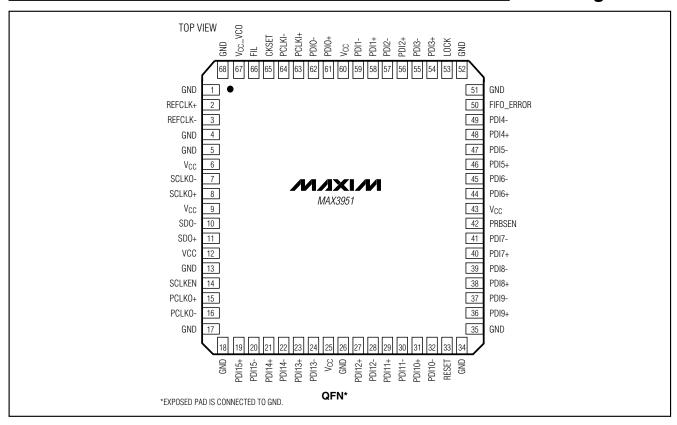
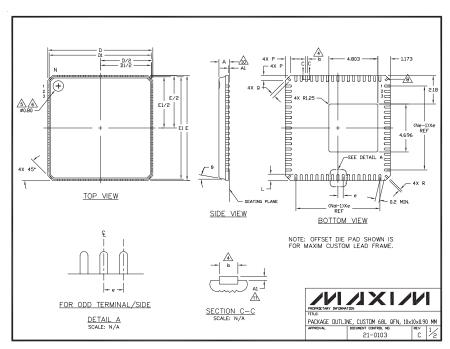
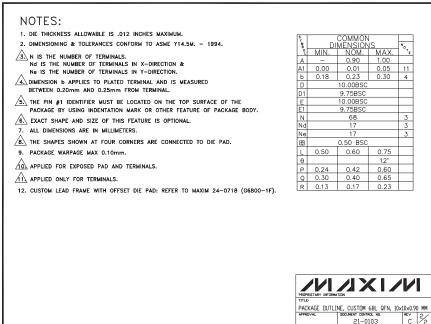


Figure 3. Functional Diagram


Figure 4. Parallel and Serial Data Timing


Pin Configuration

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

MAX3952

Part Number Table

Notes:

- 1. See the MAX3952 QuickView Data Sheet for further information on this product family or download the MAX3952 full data sheet (PDF, 304kB).
- 2. Other options and links for purchasing parts are listed at: http://www.maxim-ic.com/sales.
- 3. Didn't Find What You Need? Ask our applications engineers. Expert assistance in finding parts, usually within one business day.
- 4. Part number suffixes: T or T&R = tape and reel; + = RoHS/lead-free; # = RoHS/lead-exempt. More: See full data sheet or Part Naming Conventions.
- 5. * Some packages have variations, listed on the drawing. "PkgCode/Variation" tells which variation the product uses.

Part Number	Free Sample	Buy Direct	Package: TYPE PINS SIZE DRAWING CODE/VAR *	Temp	RoHS/Lead-Free? Materials Analysis
MAX3952EGK-TD				-40C to +85C	RoHS/Lead-Free: No
MAX3952EGK-D			QFN;68 pin;10x10x0.9mm Dwg: 21-0103D (PDF) Use pkgcode/variation: G6800-1F*	-40C to +85C	RoHS/Lead-Free: No Materials Analysis

Didn't Find What You Need?

CONTACT US: SEND US AN EMAIL

Copyright 2007 by Maxim Integrated Products, Dallas Semiconductor • Legal Notices • Privacy Policy